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Abstract

This report discusses some further developments of an analytical

solution to the 3-D Griffith crack problem. The analysis shows the
stresses at the corner points to be singular of the order (1/2 + 2v).

Moreover, the stress boundary conditions at the plate faces are shown to

be proportional to (h - z), at the upper face, and to (h + z), at the

lower face.
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In roduction

A major debility in current fracture mechanics work is the ignorance of

the effects of thickness on the mechanism of failure. For example, the

common experimental observation of a change from ductile failure at the edge

to brittle fracture at the center of a broken sheet material has so far

defied analysis. Moreover, fracture toughness of a material is presently

assumed to be constant..Yet engineering tables prescribe two different

values for thin and thick plates. More frustrating yet is the fact that

there exists no precise definition as to what represents a 'thin' or a

'thick' plate. Obviously, the concept of fracture toughness, as it is

presently defined, is an inappropriate parameter to use for the prediction

of failures due to fracture. Yet an orderly theoretical attack on the

problem can provide important guidance to these and other phases of

fracture research. The most potent mathematicai tool for this attack is the

linear theory of infinitesimal elasticity as applied to a cracked plate of

finite thickness. Although this theory cannot include the nonelastic

behavior of the material at the crack tip per se, it can evince many

characteristics of the actual behavior of a cracked plate, including those

due to thickness.

For example, such information could be valuable to the understanding

and the solution of the corresponding 3-D elastoplastic problem. While it is

true that this theory cannot give us the exact stress state at a point in the

interior of the shear lip, it can, however, prescribe fairly accurately the

shear lip envelope. Thus the theory of linear elasticity is a logical

fountainhead for detailed theoretical study.

It is for these reasons that a National Workshop on Three-Dimensional
Fracture Analysis, held at Battelle on April 26- 28, 1976, identified this
as one of the Benchmark problems in the field of Fracture Mechanics.

............................................-
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The mathematical difficulties, however, posed by three-dimensional crack

problems are substantially greater than those associated with plane stress

or plane strain. As a result, there exist in the literature very few

analytical papers that deal specifically with the three-dimensional stress

character at the base of a stationary crack. Simultaneously, in the last

two decades, numerous attempts have been made to obtain a finite element

solution by very capable researchers. Unfortunately, they too experienced

difficulties and their respective results were contradictory.

Review of author's past work.

In 1973, Folias, using a method developed by the Russian elastician

Lur'e [1] and the application of Fourier Integral Transforms, constructed

a solution [2] to Navier's equations for a mixed boundary value problem,

that of a 3-D Griffith crack (see fig. 1). The integral representations

were subsequently expanded asymptotically in the inner layers of the plate

and the displacement and stress fields were found to be:

(i) Displacements:

(c) - 1 + l / cosU = 20 2 2 2 m2 2
Z z(l - ) (l + )

+ sin € sin ( ) } + 0(') (1)

For a historical discussion see reference [3].
**Refer to proceedings of Workshop on Three-Dimensional Fracture Analysis

held at Battelle, 1976.

.- ' - - :. " " .' .''" " . ,' -', ".-.- - '.- -. " '.. . .'..'. '.-,., .,, *;- . ' -, . -"* " - , , - - " " 
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V(C) 0+ V - 2( ')sin (4)(I Co 2G (I 2v -2)

- - sin € cos )} + O( ') (2)

w(c) 0 + 0( ') (3)

(ii) Stresses:

(c 10; + 1 {lcos(4)
x 0- 2 . 2, 2

sin ¢ sin (-L.)} + O( 0
) (4)

(c) +1 2 Co:y : 0- 2.. +  2v' 2E 2 2o

( Z- ) (I + Z)

+ I sin , sin (-)} + 0(EO) (5)
4

(c ) -V -1 €, "( c (6)
Tz o 2 + 2v 2c 2

(C) ) 3O+.)

1xy 2 1 22v c{4 sin , cos
z+ Z)(I - ) (1 + )

o0
+ 0(cO (7)
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(c) - - 1 1Tyz V COh h 2v+1 " 2v+l
(1 - -) (I + )

,-E sin cos + 0(') (8)

(c) = \H A 1 1Txz Oh ~ 1  z 2v+l Zxz0 (I-T) (I +

- (1- 2v) cos( )+ sin sin( )+O( '), (9)

where :. is a function of Poisson's ratio v and c/h.

The above solution reveals the following important characteristics,

which are applicable orly in the inner layers of the plate:

(1) the stresses possess the usual 1I-T singularity,

(2) the stresses possess the usual angular distribution,

(3) the stress intensity factor KI is a function of z,

(4) exact plane strain conditions exist only on the plane z = 0,

(5) a pseudo plane strain state exists and the equation

= v(x +cY) (10)

(6) as the plate thickness 2h-- ,, the plane strain solution is

recovered,

(7) as Poisson's ratio ---0 , the plane stress solution is

recovered,

*The reader should note that the stresses are functions of z, therefore
the term 'pseudo' plane strain.

II
- . . . . ..- *
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and also serve as check points for the validity of the solution, at least

as v -- 0 and as h

One of the great advantages of an analytical expression is that it can

easily be verified as to whether it represents a solution to a problem by

direct substitution into the governing equations and the appropriate

boundary conditions. The reader should note that the above displacement

field satisfies all Navier's equations and that the stress field satisfies

the following boundary conditions

-(c) = (c) = 0 ; for : 0 and
xy yz

and

7(c) 0 ; for € : r.

y

Inasmuch as the solution represents an asymptotic expansion which is

valid only in the inner layers of the plate, naturally the stress field can

not be expected to satisfy the boundary conditions on the plate faces, i.e.

at z = h . The author, however, shows in reference [2] that in the

neighborhood of the corner point additional terms also contribute to the

same order of singularity and therefore must be accounted for. Moreover,

it was shown that all stresses there, inclusive of T(c)and (c) possess the
xz Tyzp

same order of singularity. He, subsequently, ventured to examine the

character of the stress singularity which prevails at the corner point, i.e.

the point where the crack front meets the free surface of the plate. After

See pages 669 - 671.

4 This matter will also be addressed at a later time.

It should be pointed out that the integral representations do satisfy the
boundary conditions there and that this comment refers only to the recovery
of the complete local expansion from the integral representations.

*~~~e .7- . ..

p-U
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considerable effort, it was concluded that the displacements are proportional

to /2-2v and similarly the stresses are proportional to o-/2-2v

Researchers in the field of fracture mechanics, however, were reluctant

to accept at that time the possibility of an infinite displacement field

on the basis of physical intuition. Consequently, the results were con-

sidered to be controversial and the following legitimate and fundamental

questions were raised:

1. Is the solution of this notorious difficult problem unique and if so

under what conditions?

2. Is an infinite displacement field, in this case, admissible?

3. Does the symbolic method adopted by the author[2] generate a

complete' set of eigenfunctions for the solution of Navier's

equations?

The answers to the above questions were given by Prof. Calvin Wilcox.

First of all, he was successful in proving [4] that a displacement field

which satisfies the condition of local finite energy is unique. This of

course is quite a departure from our traditional 2-D fracture mechanics

thinking, for the displacements may now be allowed to be singular. Conse-

quently, one may not a priori assume them to be finite as it is customarily

done. In general, such an assumption makes the class of solutions too

Infinite displacement fields are not uncommon in the theory of linear
elasticity. For example, it is well established that the Boussinesq's,
Kelvin's and Cerruti's problems have displacement fields that behave
like ui -c-l. The reader should also be reminded that the reported
results of the crack problem correspond to the complementary solution,
i.e. the interior of the crack faces is subjected to a uniform fluid
pressure.

This work was carried out at the request of the author and was supported
by AFOSR Contract F4.962077.C0053 which the author had at the time.
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restrictive and, as a result, one may not find the complete solution to the

problem. On the other hand, the solution could very well give finite dis-

placements everywhere! Be that as it may, physical intuition should be used

with extreme caution.

Second, he was able to show [5] that the Fourier integral expressions

representing the general solution to Navier's equations are complete and,

furthermore, the 'symbolic method' used is justifiable. In order to prove

this, he used a double Fourier integral transform in x and y and subsequently

a contour integration to recover precisely the same expressions as those

reported by Folias in [2].

Finally, it remains to determine explicitly the stress field ahead of

the crack tip and throughout the thickness of the plate. Moreover, it

would be interesting to see if the asymptotic expansion in the inner layers

of the plate matches the stress field given by equations (4)- (9).

The Corplerentary Displacement and

Stress Fields

Fror reference [3], we have the following complementary displacement

and stress fields.

(1) the displacement field:

4 2u(c) = 1 _ _2H

u I A 2- ;2(m- -) cos (F h) cos (s z)

+ m L h sin ( h) cos (z zcos (. h) sin(- z)}

+ B 2 H cos (.,h) cos (c z)4 n. +nn n n

+ 1I2 1 2 213
+ 1 - y a- -+ Z

See Eqns. (52)- (54) of [4].

K- .", '':..." ' -. .. '-.-. " " " " " . " " " ". "
",. '.'," ' , ,';' '#__'''i"" " '" " " " "" " " " "" " '" " ""' " ' ' " "'" " " " "' " '
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a2H
V(C) 1 A v { 2 (m- 1) cos (B h) cos (Bz)

-2 v=l  v 'x y

+ m h sin (E h) cos (Ez) - m Ezcos (R h) sin (e Z)

2H* (12)
- B nos h) cos (nz) 3m - 1
nl n axdy n n m+l 13 12

13 1 2? 213

+ y m+ m+ I z

(C - 1 A , { (m- 2) cos ( h) sin (s z)

- m- h sin (: h) sin (E z)-m in z cos (a h) cos ( z) } (13)
r - 2 V V

2 z 13
m+ I 'Y'

where for simplicity we have adopted the following definitions:

A HI (y;Ee 2+V2 y sin (sx) ds (14)2 2

Sn e V s2 + a_ n _l
(-1)nBnHn (x,Y;an = n2  si(sx) ds , (15)

n nn
0 S 2 + a n2  VIs 2 + Ctn 2

with A and B as functions of and an respectively,

;nr
6n - n 1,2,3,... (16)

Sh- -
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the roots of the transidental equation

sin (2. h) = -2(e h) , (17)

and

11 = " P(s) e-s  Y  sin (sx) ds (18)L- "o

I2 - P(s) e- s y  cos (sx) ds (19)

". (s) e- s  Y' cos (sx) ds (20)3 = o s

'i) the stress field:

1 (c) 2 A 2 H
A -1 --- ( Ch) Cos z)2G2 S: 2 v cx v

3H
1 v

• A - 2(m- 1) cos (,E h) cos( Z)n- - 2 vlv x3

V~l x

+ m h sin( h) cos (E z) -m F z cos (E h) sin (, z)l (21)

, 3H* *
n 2 Bn

B - + - os (C h) cos (a z)n-l n x3  n axn n

nI 1 n , 1 1

2 2
3 3 1 22 + 2 3'y 2 +  z 2Ox x2 lYl M+ 1?IYl

1 -] . . - . - " " -" " " -. -" " " " " -" • " . ' " • " ." --....." .- " . ' ' ' " -.- , " " , , " -" " " ' " , . . " -e-7, " " - " -
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(c) 2 2 ACos h) cos z)

2Gy m- 2 v=1 as

3H aH

A I -- A {- - ; 2 I{2(m-l)cos(B h) cos(- z)\, x ax v

+ m h sin (£ h) cos (B z)- m z cos (B h) sin (a z) } (22)
VV 'V V VJ V

3* H

+ B " n cos(a h) cos (a z)

nl n x3  n ax n n

2 A 71 213 a31

2,n _ + 1, + Y! 3 1 2 3
+ rr1 .x,+, ax2 a+ X ax2 a lyl

dH
(c) ___ - A , - , hsin (F h) cos (E z)

z m-2 ax v V

(23)

+ z Cos ( h) sin ( z)

(c) 2 A - 2 (m- 1) cos h) cos( z)
G -xy m-2 :I ax2 y 2

+ m- hsin( h) cos(2 z)-im z cos(8 h) sin (£ z) }

3* (24)
f 2"- n cos (a h) cos (c z)

n 22'? ay n n
n1 axy
2 2 2 2 a31 3  a213

m-_ 1 13 2  __+ +__2_y_

ax m+ T z-- + 21yy
ax ~axa lylI

%



a2H
1 (c) 2m D A H\)

Txz m-A2 C -{cos( h) sin(B z)
ax

+ V h sin (F h) sin ( z) + r z Cos (SVh) cos (aBz) } (25)

2*
3 H

n 2*+ Bn { 2 - H an cos (cn h) sin (n z)n=l axn n

:, 2H

1 (c) 2m -< { cos (.h) sin z
Gyz i-2 A axy "z)

+ h sin ( h) sin (e z) + e z cos (6 h) cos (E z) } (26)

+ 7 B n cos (a: h) sin (a z)
n=l y

By direct substitution, it can easily be ascertained that the fore-

going complementary displacement field satisfies Navier's equations and

furthermore the corresponding stresses C (0c Tzx (c), Tyz (c) do vanish at

the plate faces z h. The remaining boundary conditions:

(c) 0(c) ; for y 0 and all x (27)-(28)

yz yx

and

(c) - ; for y 0 and all x < , (29)

are satisfied, if one considers the following combinations to vanish

respectively:

.. .

-"° • - - - -
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2m - A H
m- 2 -h sin (Bv h) cos (Ez)

B~n
-z cos (evh) sin (B z) + : Bn (a--y:O

(30)S aH
C h) cos (a z) + 4m A 0COS (\n m-2 v A (- y= 0 ;

n =m- 1 ay y=0

for all x

4 2 A c3H
2 A 2 - )y:0 { 2 i) cos (E h) cos (s z)mr- 2 2=I 11 vx b

+ .hsin ( Vh) cos (Kz) -ma zcos (F z) sin (6 z) }

Z Bn  2 n an2 y=} cos (cknh) cos C a z)nl x2y n y y=O nn

3 (31)

m- 1I3 aI2 2 2 313
+f- 2 (m-1 -T)  -2 -+ - z 0 0

m+ 1 x + 1 x 3  y=O

for all x,

and

2 2 H,
m-- 1 A ;( H co s ( h) cos (v z)

S3H 2 al

I A f - (m -1 cos (s h)m- 2 ,=v v }y:0 a TIv7x =

4: a

• . ., ., ..- , . , ., , .... .. ; . .. ... , . ..; .., . .. -.. .. , .. , ,.;. .-. . .. , . _, . ,, ,, . , .. . -. ,-.. ..-- -,, -,-..- , -,,-.,...., ---.1
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Cos ( z) + m h sin (B h) cos ( z) - m z

(32)
3* n

cos h) sin (s z) } + z B j n 2 Hn
n~l n ax3  n ax y=O

+ 2m 213 2I1
cos (, h) cos (az ) + m + 1+ --

n n M
1 2 73
m l z x a y{ =O (!X) ; xl c

Next, upon utilizing eq. (30) into eq. (31), one finds: after some

rearrangement:

2 - 2 2
2 2 A (:H 2 (m-i) cos (E h) cos (E z)
2 n- 2 =1 Y=O v v

- F h ~sin h) cos( z)( +m F z cos(,- h) sin(F z)]

+ 8ni8n- A ( ;':)y
2 :iy Y=O

(33)

.2 2H2m 2- )=
2 A Y( hsin (E h) cos z)

2 m- 2 a y~yQ

- ,z cos 'I h) sin ( z) ]

3

2 - {_2 (m- l 13 2 12 + 2 2 13
M+ 1 x ax x3  3=Oax

for all x

4

'-- '" "," .." ." .", ." ". " . , i:. ." . . . .. . . . ..
'f ..:,". .".f , .".. -",""'_, ."" -." '."". " ..-,' .., !." '. ' ,,:',¢ :., ' ,. " . '. .: " ," :' , - . .": ', , .-h- .- , .. """. ,
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The problem, therefore, has been reduced to that of solving equations

(30), (32) and (33) for the complex coefficients A , the real coefficients

Bn, and the respective functions H (x,y;a ) and Hn(x,y;an) subject to the

continuity conditions

Hy = 0 ; Ix > c (34)y I!y:O

-ny :y=O = 0 ; x!>c (35)

However, before one engages into a lengthy numerical procedure for the

solution of the systerr, it would be desirable to construct, if possible, the

functions H (x,y;e ) and Hn (x,y;, n ) analytically. After considerable

mathematical manipulations it is possible to construct these functions.

For exam.ple, without going into the mathematical details H* is found ton

be:

Hn(x,y;n) = x- nY x e n, ["r I + JY +v'rI - WY e

n

n

+ --- [Vr + Y VrI y e
2 fT 2 2

n

e e _n e Erf [ (r -en r '_ Ey (36)"n' 2
y  

1Y n E f ;(T y

See footnote on next page.

' P -1.
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where we have adopted the following definitions

r (x-c)2 + y2 (37a)

r y'XC) 2 + (37b)

z 2nErr (z) 1 2 e-. dT , (38)

Z. 0

and the upxer and lower signs refer to x < c and Ix I > c, respectively.

For the sake of brevity and in order not to lose the reader with the long
and tedious manipulations we omit this derivation. The reader will find
it easier to show that this expression satisfies the differential
equation:

2* 2*
Hn n Hn 2*
2 + 2 n Hn =0,

the continuity condition (35), the shear boundary conditions T c) and(c)yx
at y 0 and for 1x, > c and furthermore along the crack facesyz

0t

aHn

- 1
0xl:



16

A similar expression may be obtained for H (x,y;B ) as a combination of

the function (36) and its derivatives. This step was very important for it

enables one to extract the dependence in x and y analytically rather than

numerically. In summary, therefore, the problem has now been reduced to

that of solving equations (30), (32) and (33) for the complex constant

coefficients A and the real but constant coefficients Bn* Moreover, the

displacement and stress fields may now be expressed in terms of one summation

rather than one summation and one integral.

Although the numerical solution of these coefficients is now possible,

from which the singularity may then be determined (at least in principle),

we believe that such procedure may not lead us to all the singularities of

the problem and that such information should be extracted by analytical

means.

The behavior of the solution at the corner.

One of the acadamic questions that has defied researchers for a long

time is the order of the singularity that prevails at the corner point.

Thus, in order for us to study the stress distribution in the vicinity of

that point, we introduce the following function

f(h)(h+z) : z A (-aH cos (h + z)], (39)

in view of which the homogeneous portion of equation (33) may now be

written as

This is because numerical procedures tend to average local affects.

• .%;. -,/ ,., , .- -'.- . -" 'L-,-...- .. . .' .. " ".. . - .. . " .- .',''.'.% -'-.''.\ ".'



d

17
3 2 a2h( +Z)I

2(l-\) f(h)(h+z) + (h-z) af(h)(h+z) (h-Z)

az 2322i+ {(h)9x az

af(h)(h+z) 2 (h) (h)- Z)

Z + 2(l-) f (h- z) + (h+ Z) azax

SI +z f(h)(hz) } 0; for all -h < z < h (40)
z

We seek next the solution of the above equation in the form:

f(h)(h+z) C0 (c- x)-1/2 (h-z)
2 "  F() (41)

where

'0 l-. (42)'0

and

h- z
ri2 + hz 2  (43)

V'(c- x) + (h z)

Substituting, therefore, eq. (41) into (40) one finds that the equation is

satisfied provided that the function F(q) is a solution of the following

ordinary differential equation:

7 5  3 ' 6 4 n2

+ -, )F + (k + k. + m ) F

(44)
53'

+ (b 5 + d r3 + en) F + aF : 0

6.

where

z t
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2%
a= 4,0 (1 - 2 vO)

b = - 6 (1+3 )

d = 12vO2 + 20 v0 + 21/4

e = -2.. 0  (I+6'.'0) (45) - (51)

k - 6 (1 + v )

1= 4 (2+ 3 %)

rr 2 (1 + 3. 0 )

Finally, the solution of equation (44) can be found by the application of

the method of Frobenious, i.e.

* +n
F( 1 : . C , (52)

n=0

Without going into the details, the indicial equation is found to be

-1)1(-2) + (6 +2) -1) + 2,(1 +6v 0) v

+ ,o 2 (2 , 0 - 1) : 0 , (53)

the roots of which are:

-2 0 double root

= :i (54)

L 1 - 2 v0

I:- . -'-'' P-" . . .' ""i,., ... .;, . - - - . .,-".-". -" "- . ' ' ' -" ". . - - - . .. "-"." -" .,
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One concludes, therefore, that

1-V

f (h+z) CO (c-x)
-  { (c- x)2 + (h- z) 2 H(n) , (55)

where H(Tn) represents an even power series in n the behavior of which for

small values of q, i.e. around the point n = 0, is shown in fig. 2. A

similar asymptotic expansion around the points n + 1 shows that

H(-) (1- 2 , C (I- r2)n (56)

n=O

3
with - -4 The behavior of H around the point n =-l, for example, is

shown in fig. 3. It should be emphasized that there exist no singular

points of any kind between zero andtone. Hence the function H(n), in

between, represents a smooth curve. Pending a further analytical or

numerical study of H(-,) the function has been approximated by the dotted

curve.

In view of eq. (55), the function of f (h)(h+z) has now been

determined. While there are many ways that one can now use to complete the

rest of the proble., the authors suggest the following method in order to

extract an explicit analytical form of the solution. First, one needs to

construct a harmonic function ,(x,y,h+ z) such that

The reader should note that this is only one out of the three
solutions and that the double root leads to a logarithmic solution.

**1

The reader should note that the other two values of y = 0 and ' -

correspond to the logarithmic and the a = 1- 2v0 solutions,
respectively.

In the event that a numerical scheme is used, the matching of the two
curves must be done with care.

...... .....-....:~ ~ ~ ~ . . .. .. ..-.,.. .. .. . ..... ,. ... .... ... ...... , , . . ,i .... i 1. ..
< .. . . . . . . . . . . . . . . . . . . .. *. -. .' .-.. . -, - , . .' .'.- '
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y.(x,y;h+z) z Z A H cos a (h+z) (57)
VI

and that the following boundary condition be satisfied

y=O y= f(h) + f(P)fy +, (58)

X<C

where f(P) represents the particular solution of equation (40) and which can

easily be obtained. This, however, is Newman's problem which in principle

can be solved. To obtain, however, an explicit solution requires some

effort. Be that as it may, the authors believe that this is feasible for

there exists a considerable amount of knowledge related to the behavior of

this type of a function.

For example, see eq. (36).

.M111 .a•
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Discussion of the results

In order for us to see the form of the singularity which prevails at

the vicinity of the corner point, we introduce the local spherical

coordinates defined by the transformation:

c - x : p sin z cos €

y = ; sin - sin € (59)

h - z : ; cos 6,

which lead to*

f(h) (h + z) = Co 2 H (cos -) , (60)
Vsin

fron which it is evident that the displacements are proportional to

"12 - 2. and the stresses proportional to c 112 - 2v We observe, there-

fore, that this is the same result as that reported in reference [2].

Let us next examine the behavior of the function f in the inner layers

of the plate, i.e. for all x - c = e < h - z

CO  22 E2 1-v 1
f(h) (h + z) - (h - z)H-V{ 1 + 2 2

~~~~(h - z) 2  Vl {
1I+ 2(h-z)

(61)

: - (h - z)2-2V H (I) + 0 (c°)

which again leads to the same type of results as those reported in ref. [2].

We now have, therefore, a better understanding of the type of expansions

that equations (4)- (9) represent.

*The reader should recall that the function f(h) is defined on the plane

y O.
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It would be appropriate at this time to reexamine the question as to

whether boundary conditions (c), can indeed be satisfied at the
zz xz yz

plate faces. An examination of these stresses shows that they can be

expressed in terms of
-2

(h - z) - ' andz2  z

**

and similar expressions. The former is automatically satisfied by virtue

of the factor (h- z). The latter, after the odd derivative is taken, a

factor (h- z) is kicked out thus forcing it to vanish. The reader should

recall that f(h) is an even function of (h-z). All other terms, which are

of a lesser order, are negated by the particular solution If(P)]. One

corcludes, therefore, that such an expansion can indeed satisfy the

boundary conditions at the plate faces and, as a result, is admissible.

It would be interesting next to compute the displacement function

v(x,o,z) in the neighborhood of the corner point. Without going into the

mathe->atical details one finds after some rearrangement that

V(c) : 0, c- x 2 G(r,) + (62)

where

G(-) [(4 2 - 0 n2 + 4 v2 + VO)] H +

(63)

+ [(3 - 4 + (4 0 - 1)n]H' + (n2 1) 2
02

The reader should note that there was never a question as to whether the
solution in the integral representation form did just that.

The reader should also take into account eq. (30).

The ... here indicate terms of higher order.

4P
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A plot of the function G(-,) is given in Fig. 3 for various Poisson's

ratios. The value of r, = 0 corresponds to the free surface while n = -1

corresponds to the crack front. The constant C0 is proportional to the

applied stress and a function of Poisson's ratio. Thus, although the

amplitude of v may change, the trend will remain the same. An examination

of the curve also shows that as one moves from the crack front to the free

surfaces of the plate the crack widens, a result that meets our expecta-

tions.

Notice also that for zero Poisson's ratio the function G is constant

and the displacement now becomes

lin C) (,o,Z) lir C const. 'c - x (64)
v-.O 0

This result also meets our expectations for it represents an exact

solution.

Let us next exanine the behavior of the displacement in the neighbor-

hood of the crack front, i.e. when -1. The function H(r,) then behaves

like

H() (I - 2)3/4

which then leads to

v(c) 1const. /2-2\ (11-2)-I/4 +

(65)
= const. I/ ""I+

See eq. (56).

4
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Conclusions

As a result of this study, the authors draw the following conclusions.

First of all the displacements in the neighborhood of the corner point

are at least proportional to

1/2-2. f( (66)

and that the functions fi(e,) do not vanish.

Second, while it is true that for Poisson's ratios greater* than 1/4

the displacements are infinite, the local strain energy however remains

finite. Consequently, such a solution is admissible and, if it represents

a solution', it is the only solution[ . Infinite displacements are not

new to the field of linear elasticity. For example, Cerruti's problem

leads to higher order singularities (displacements l /,). It should be

emphasized that the problem which the authors have solved is that of the

complementary 3-D Griffith crack, where the crack faces now are subjected

to a uniform internal pressure co.

Third, the solution is not separable in spherical coordinates. Thus

solutions that do invoke such an assumption may or may not lead to the

correct or complete solution of the problem.

Fourth, physically what the solution really shows is that linear

theory is inadequate in predicting the actual behavior of the material at

such corner points. This, however, should not be interpreted as if no

practical information can be extracted from such a solution. An example of

this is the 2-D solution which predicts infinite stresses at the base of the

crack.

Fifth, the material cannot sustain such large stresses at the corner

and, as a result, it must relax. This relaxation is accomplished in two

*For v = 1/4, the displacements are pi/2-2(I/4) , p0 . In this case u I lnp.

...* -%. v -



25

ways. Initially the material yields, thus forming the shear lips, and

simultaneously it fractures, thus forming the well known 'tunneling effect'.

* The authors believe that this fracture initiates first at the corner,

"-" where the material tries to smooth out the 900 angle and subsequently its

crack advances in the manner shown on fig. 4.

Sixth, present experimental results may not be used to prove or dis-

prove a solution for the following reasons. In experimental work a crack

is usually introduced by mechanical means and is subsequently fatigued in

order to attain a sharp crack tip. The process of fatigue, however, will

undoubtedly smooth out these sharp corners thus altering the geometry of
0

the problem. Moreover, if the displacements are indeed very large, the

material will yield and the shear lips will be formed. In such a case,

the principle of superposition is no longer valid and any such comparison

may be meaningless, unless the load in the experimental procedure is

applied to the crack faces in which case one then compares 'complementary'

- proble s.

-Seventh, it has been observed experimentally that on the free surfaces

of a plate and around the neighborhood of the crack tip, a small dip

appears during the process of deformation. This dip substantiates the fact

that, whenever a load is applied to the plate, it forces the material to

- smooth out the ninety degree corner. Moreover, the larger the load is the

more noticeable the dip is. As in the 2-D case, large forces of atomic or

molecular attraction of the order of the "theoretical strength" prevail at

such corners. These "cohesive forces", attempting to smooth out the right

angle, pull the material towards the center of the plate thus forcing the

0 crack front to 'buckle' and tunnel its way into the center of the plate.

0 °
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Eighth, the authors believe that there exist two different types of

solution expansions that intermix to form the various singularities of

the problem. This phenomenon, coupled with the fact that the solution

is not separable in spherical coordinates may offer an explanation as to

why other authors obtained, numerically, results of a lesser order

singularity.

Engineering fracture mechanics can deliver the methodology to com-

pensate the inadequacies of conventional design concepts that were based

on tensile strength or yield strength. While such criteria are adequate

for many engineering structures, they are insufficient when the likelihood

of cracks exists. Now, after approximately three decades of development,

fracture mechanics has become a useful tool in design, particularly with

high strength materials. Interestingly enough, this advancement has been

based primarily on the 2-D solution of the Griffith crack problem. We

believe that the 3-D solution of the Griffith crack problem will not only

enable us to understand the mechanism of fracture propagation better, but

it will also expand our horizons for future research and, hopefully, will

contribute to the advancement of the field of fracture mechanics to higher

levels of safe design against fracture. It is for these reasons that this

study was undertaken.
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